1 | package brotli
|
---|
2 |
|
---|
3 | import "math"
|
---|
4 |
|
---|
5 | /* Copyright 2010 Google Inc. All Rights Reserved.
|
---|
6 |
|
---|
7 | Distributed under MIT license.
|
---|
8 | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
---|
9 | */
|
---|
10 |
|
---|
11 | /* Entropy encoding (Huffman) utilities. */
|
---|
12 |
|
---|
13 | /* A node of a Huffman tree. */
|
---|
14 | type huffmanTree struct {
|
---|
15 | total_count_ uint32
|
---|
16 | index_left_ int16
|
---|
17 | index_right_or_value_ int16
|
---|
18 | }
|
---|
19 |
|
---|
20 | func initHuffmanTree(self *huffmanTree, count uint32, left int16, right int16) {
|
---|
21 | self.total_count_ = count
|
---|
22 | self.index_left_ = left
|
---|
23 | self.index_right_or_value_ = right
|
---|
24 | }
|
---|
25 |
|
---|
26 | /* Input size optimized Shell sort. */
|
---|
27 | type huffmanTreeComparator func(huffmanTree, huffmanTree) bool
|
---|
28 |
|
---|
29 | var sortHuffmanTreeItems_gaps = []uint{132, 57, 23, 10, 4, 1}
|
---|
30 |
|
---|
31 | func sortHuffmanTreeItems(items []huffmanTree, n uint, comparator huffmanTreeComparator) {
|
---|
32 | if n < 13 {
|
---|
33 | /* Insertion sort. */
|
---|
34 | var i uint
|
---|
35 | for i = 1; i < n; i++ {
|
---|
36 | var tmp huffmanTree = items[i]
|
---|
37 | var k uint = i
|
---|
38 | var j uint = i - 1
|
---|
39 | for comparator(tmp, items[j]) {
|
---|
40 | items[k] = items[j]
|
---|
41 | k = j
|
---|
42 | if j == 0 {
|
---|
43 | break
|
---|
44 | }
|
---|
45 | j--
|
---|
46 | }
|
---|
47 |
|
---|
48 | items[k] = tmp
|
---|
49 | }
|
---|
50 |
|
---|
51 | return
|
---|
52 | } else {
|
---|
53 | var g int
|
---|
54 | if n < 57 {
|
---|
55 | g = 2
|
---|
56 | } else {
|
---|
57 | g = 0
|
---|
58 | }
|
---|
59 | for ; g < 6; g++ {
|
---|
60 | var gap uint = sortHuffmanTreeItems_gaps[g]
|
---|
61 | var i uint
|
---|
62 | for i = gap; i < n; i++ {
|
---|
63 | var j uint = i
|
---|
64 | var tmp huffmanTree = items[i]
|
---|
65 | for ; j >= gap && comparator(tmp, items[j-gap]); j -= gap {
|
---|
66 | items[j] = items[j-gap]
|
---|
67 | }
|
---|
68 |
|
---|
69 | items[j] = tmp
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 | /* Returns 1 if assignment of depths succeeded, otherwise 0. */
|
---|
76 | func setDepth(p0 int, pool []huffmanTree, depth []byte, max_depth int) bool {
|
---|
77 | var stack [16]int
|
---|
78 | var level int = 0
|
---|
79 | var p int = p0
|
---|
80 | assert(max_depth <= 15)
|
---|
81 | stack[0] = -1
|
---|
82 | for {
|
---|
83 | if pool[p].index_left_ >= 0 {
|
---|
84 | level++
|
---|
85 | if level > max_depth {
|
---|
86 | return false
|
---|
87 | }
|
---|
88 | stack[level] = int(pool[p].index_right_or_value_)
|
---|
89 | p = int(pool[p].index_left_)
|
---|
90 | continue
|
---|
91 | } else {
|
---|
92 | depth[pool[p].index_right_or_value_] = byte(level)
|
---|
93 | }
|
---|
94 |
|
---|
95 | for level >= 0 && stack[level] == -1 {
|
---|
96 | level--
|
---|
97 | }
|
---|
98 | if level < 0 {
|
---|
99 | return true
|
---|
100 | }
|
---|
101 | p = stack[level]
|
---|
102 | stack[level] = -1
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | /* Sort the root nodes, least popular first. */
|
---|
107 | func sortHuffmanTree(v0 huffmanTree, v1 huffmanTree) bool {
|
---|
108 | if v0.total_count_ != v1.total_count_ {
|
---|
109 | return v0.total_count_ < v1.total_count_
|
---|
110 | }
|
---|
111 |
|
---|
112 | return v0.index_right_or_value_ > v1.index_right_or_value_
|
---|
113 | }
|
---|
114 |
|
---|
115 | /* This function will create a Huffman tree.
|
---|
116 |
|
---|
117 | The catch here is that the tree cannot be arbitrarily deep.
|
---|
118 | Brotli specifies a maximum depth of 15 bits for "code trees"
|
---|
119 | and 7 bits for "code length code trees."
|
---|
120 |
|
---|
121 | count_limit is the value that is to be faked as the minimum value
|
---|
122 | and this minimum value is raised until the tree matches the
|
---|
123 | maximum length requirement.
|
---|
124 |
|
---|
125 | This algorithm is not of excellent performance for very long data blocks,
|
---|
126 | especially when population counts are longer than 2**tree_limit, but
|
---|
127 | we are not planning to use this with extremely long blocks.
|
---|
128 |
|
---|
129 | See http://en.wikipedia.org/wiki/Huffman_coding */
|
---|
130 | func createHuffmanTree(data []uint32, length uint, tree_limit int, tree []huffmanTree, depth []byte) {
|
---|
131 | var count_limit uint32
|
---|
132 | var sentinel huffmanTree
|
---|
133 | initHuffmanTree(&sentinel, math.MaxUint32, -1, -1)
|
---|
134 |
|
---|
135 | /* For block sizes below 64 kB, we never need to do a second iteration
|
---|
136 | of this loop. Probably all of our block sizes will be smaller than
|
---|
137 | that, so this loop is mostly of academic interest. If we actually
|
---|
138 | would need this, we would be better off with the Katajainen algorithm. */
|
---|
139 | for count_limit = 1; ; count_limit *= 2 {
|
---|
140 | var n uint = 0
|
---|
141 | var i uint
|
---|
142 | var j uint
|
---|
143 | var k uint
|
---|
144 | for i = length; i != 0; {
|
---|
145 | i--
|
---|
146 | if data[i] != 0 {
|
---|
147 | var count uint32 = brotli_max_uint32_t(data[i], count_limit)
|
---|
148 | initHuffmanTree(&tree[n], count, -1, int16(i))
|
---|
149 | n++
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | if n == 1 {
|
---|
154 | depth[tree[0].index_right_or_value_] = 1 /* Only one element. */
|
---|
155 | break
|
---|
156 | }
|
---|
157 |
|
---|
158 | sortHuffmanTreeItems(tree, n, huffmanTreeComparator(sortHuffmanTree))
|
---|
159 |
|
---|
160 | /* The nodes are:
|
---|
161 | [0, n): the sorted leaf nodes that we start with.
|
---|
162 | [n]: we add a sentinel here.
|
---|
163 | [n + 1, 2n): new parent nodes are added here, starting from
|
---|
164 | (n+1). These are naturally in ascending order.
|
---|
165 | [2n]: we add a sentinel at the end as well.
|
---|
166 | There will be (2n+1) elements at the end. */
|
---|
167 | tree[n] = sentinel
|
---|
168 |
|
---|
169 | tree[n+1] = sentinel
|
---|
170 |
|
---|
171 | i = 0 /* Points to the next leaf node. */
|
---|
172 | j = n + 1 /* Points to the next non-leaf node. */
|
---|
173 | for k = n - 1; k != 0; k-- {
|
---|
174 | var left uint
|
---|
175 | var right uint
|
---|
176 | if tree[i].total_count_ <= tree[j].total_count_ {
|
---|
177 | left = i
|
---|
178 | i++
|
---|
179 | } else {
|
---|
180 | left = j
|
---|
181 | j++
|
---|
182 | }
|
---|
183 |
|
---|
184 | if tree[i].total_count_ <= tree[j].total_count_ {
|
---|
185 | right = i
|
---|
186 | i++
|
---|
187 | } else {
|
---|
188 | right = j
|
---|
189 | j++
|
---|
190 | }
|
---|
191 | {
|
---|
192 | /* The sentinel node becomes the parent node. */
|
---|
193 | var j_end uint = 2*n - k
|
---|
194 | tree[j_end].total_count_ = tree[left].total_count_ + tree[right].total_count_
|
---|
195 | tree[j_end].index_left_ = int16(left)
|
---|
196 | tree[j_end].index_right_or_value_ = int16(right)
|
---|
197 |
|
---|
198 | /* Add back the last sentinel node. */
|
---|
199 | tree[j_end+1] = sentinel
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | if setDepth(int(2*n-1), tree[0:], depth, tree_limit) {
|
---|
204 | /* We need to pack the Huffman tree in tree_limit bits. If this was not
|
---|
205 | successful, add fake entities to the lowest values and retry. */
|
---|
206 | break
|
---|
207 | }
|
---|
208 | }
|
---|
209 | }
|
---|
210 |
|
---|
211 | func reverse(v []byte, start uint, end uint) {
|
---|
212 | end--
|
---|
213 | for start < end {
|
---|
214 | var tmp byte = v[start]
|
---|
215 | v[start] = v[end]
|
---|
216 | v[end] = tmp
|
---|
217 | start++
|
---|
218 | end--
|
---|
219 | }
|
---|
220 | }
|
---|
221 |
|
---|
222 | func writeHuffmanTreeRepetitions(previous_value byte, value byte, repetitions uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
|
---|
223 | assert(repetitions > 0)
|
---|
224 | if previous_value != value {
|
---|
225 | tree[*tree_size] = value
|
---|
226 | extra_bits_data[*tree_size] = 0
|
---|
227 | (*tree_size)++
|
---|
228 | repetitions--
|
---|
229 | }
|
---|
230 |
|
---|
231 | if repetitions == 7 {
|
---|
232 | tree[*tree_size] = value
|
---|
233 | extra_bits_data[*tree_size] = 0
|
---|
234 | (*tree_size)++
|
---|
235 | repetitions--
|
---|
236 | }
|
---|
237 |
|
---|
238 | if repetitions < 3 {
|
---|
239 | var i uint
|
---|
240 | for i = 0; i < repetitions; i++ {
|
---|
241 | tree[*tree_size] = value
|
---|
242 | extra_bits_data[*tree_size] = 0
|
---|
243 | (*tree_size)++
|
---|
244 | }
|
---|
245 | } else {
|
---|
246 | var start uint = *tree_size
|
---|
247 | repetitions -= 3
|
---|
248 | for {
|
---|
249 | tree[*tree_size] = repeatPreviousCodeLength
|
---|
250 | extra_bits_data[*tree_size] = byte(repetitions & 0x3)
|
---|
251 | (*tree_size)++
|
---|
252 | repetitions >>= 2
|
---|
253 | if repetitions == 0 {
|
---|
254 | break
|
---|
255 | }
|
---|
256 |
|
---|
257 | repetitions--
|
---|
258 | }
|
---|
259 |
|
---|
260 | reverse(tree, start, *tree_size)
|
---|
261 | reverse(extra_bits_data, start, *tree_size)
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | func writeHuffmanTreeRepetitionsZeros(repetitions uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
|
---|
266 | if repetitions == 11 {
|
---|
267 | tree[*tree_size] = 0
|
---|
268 | extra_bits_data[*tree_size] = 0
|
---|
269 | (*tree_size)++
|
---|
270 | repetitions--
|
---|
271 | }
|
---|
272 |
|
---|
273 | if repetitions < 3 {
|
---|
274 | var i uint
|
---|
275 | for i = 0; i < repetitions; i++ {
|
---|
276 | tree[*tree_size] = 0
|
---|
277 | extra_bits_data[*tree_size] = 0
|
---|
278 | (*tree_size)++
|
---|
279 | }
|
---|
280 | } else {
|
---|
281 | var start uint = *tree_size
|
---|
282 | repetitions -= 3
|
---|
283 | for {
|
---|
284 | tree[*tree_size] = repeatZeroCodeLength
|
---|
285 | extra_bits_data[*tree_size] = byte(repetitions & 0x7)
|
---|
286 | (*tree_size)++
|
---|
287 | repetitions >>= 3
|
---|
288 | if repetitions == 0 {
|
---|
289 | break
|
---|
290 | }
|
---|
291 |
|
---|
292 | repetitions--
|
---|
293 | }
|
---|
294 |
|
---|
295 | reverse(tree, start, *tree_size)
|
---|
296 | reverse(extra_bits_data, start, *tree_size)
|
---|
297 | }
|
---|
298 | }
|
---|
299 |
|
---|
300 | /* Change the population counts in a way that the consequent
|
---|
301 | Huffman tree compression, especially its RLE-part will be more
|
---|
302 | likely to compress this data more efficiently.
|
---|
303 |
|
---|
304 | length contains the size of the histogram.
|
---|
305 | counts contains the population counts.
|
---|
306 | good_for_rle is a buffer of at least length size */
|
---|
307 | func optimizeHuffmanCountsForRLE(length uint, counts []uint32, good_for_rle []byte) {
|
---|
308 | var nonzero_count uint = 0
|
---|
309 | var stride uint
|
---|
310 | var limit uint
|
---|
311 | var sum uint
|
---|
312 | var streak_limit uint = 1240
|
---|
313 | var i uint
|
---|
314 | /* Let's make the Huffman code more compatible with RLE encoding. */
|
---|
315 | for i = 0; i < length; i++ {
|
---|
316 | if counts[i] != 0 {
|
---|
317 | nonzero_count++
|
---|
318 | }
|
---|
319 | }
|
---|
320 |
|
---|
321 | if nonzero_count < 16 {
|
---|
322 | return
|
---|
323 | }
|
---|
324 |
|
---|
325 | for length != 0 && counts[length-1] == 0 {
|
---|
326 | length--
|
---|
327 | }
|
---|
328 |
|
---|
329 | if length == 0 {
|
---|
330 | return /* All zeros. */
|
---|
331 | }
|
---|
332 |
|
---|
333 | /* Now counts[0..length - 1] does not have trailing zeros. */
|
---|
334 | {
|
---|
335 | var nonzeros uint = 0
|
---|
336 | var smallest_nonzero uint32 = 1 << 30
|
---|
337 | for i = 0; i < length; i++ {
|
---|
338 | if counts[i] != 0 {
|
---|
339 | nonzeros++
|
---|
340 | if smallest_nonzero > counts[i] {
|
---|
341 | smallest_nonzero = counts[i]
|
---|
342 | }
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | if nonzeros < 5 {
|
---|
347 | /* Small histogram will model it well. */
|
---|
348 | return
|
---|
349 | }
|
---|
350 |
|
---|
351 | if smallest_nonzero < 4 {
|
---|
352 | var zeros uint = length - nonzeros
|
---|
353 | if zeros < 6 {
|
---|
354 | for i = 1; i < length-1; i++ {
|
---|
355 | if counts[i-1] != 0 && counts[i] == 0 && counts[i+1] != 0 {
|
---|
356 | counts[i] = 1
|
---|
357 | }
|
---|
358 | }
|
---|
359 | }
|
---|
360 | }
|
---|
361 |
|
---|
362 | if nonzeros < 28 {
|
---|
363 | return
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | /* 2) Let's mark all population counts that already can be encoded
|
---|
368 | with an RLE code. */
|
---|
369 | for i := 0; i < int(length); i++ {
|
---|
370 | good_for_rle[i] = 0
|
---|
371 | }
|
---|
372 | {
|
---|
373 | var symbol uint32 = counts[0]
|
---|
374 | /* Let's not spoil any of the existing good RLE codes.
|
---|
375 | Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
---|
376 | Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
|
---|
377 |
|
---|
378 | var step uint = 0
|
---|
379 | for i = 0; i <= length; i++ {
|
---|
380 | if i == length || counts[i] != symbol {
|
---|
381 | if (symbol == 0 && step >= 5) || (symbol != 0 && step >= 7) {
|
---|
382 | var k uint
|
---|
383 | for k = 0; k < step; k++ {
|
---|
384 | good_for_rle[i-k-1] = 1
|
---|
385 | }
|
---|
386 | }
|
---|
387 |
|
---|
388 | step = 1
|
---|
389 | if i != length {
|
---|
390 | symbol = counts[i]
|
---|
391 | }
|
---|
392 | } else {
|
---|
393 | step++
|
---|
394 | }
|
---|
395 | }
|
---|
396 | }
|
---|
397 |
|
---|
398 | /* 3) Let's replace those population counts that lead to more RLE codes.
|
---|
399 | Math here is in 24.8 fixed point representation. */
|
---|
400 | stride = 0
|
---|
401 |
|
---|
402 | limit = uint(256*(counts[0]+counts[1]+counts[2])/3 + 420)
|
---|
403 | sum = 0
|
---|
404 | for i = 0; i <= length; i++ {
|
---|
405 | if i == length || good_for_rle[i] != 0 || (i != 0 && good_for_rle[i-1] != 0) || (256*counts[i]-uint32(limit)+uint32(streak_limit)) >= uint32(2*streak_limit) {
|
---|
406 | if stride >= 4 || (stride >= 3 && sum == 0) {
|
---|
407 | var k uint
|
---|
408 | var count uint = (sum + stride/2) / stride
|
---|
409 | /* The stride must end, collapse what we have, if we have enough (4). */
|
---|
410 | if count == 0 {
|
---|
411 | count = 1
|
---|
412 | }
|
---|
413 |
|
---|
414 | if sum == 0 {
|
---|
415 | /* Don't make an all zeros stride to be upgraded to ones. */
|
---|
416 | count = 0
|
---|
417 | }
|
---|
418 |
|
---|
419 | for k = 0; k < stride; k++ {
|
---|
420 | /* We don't want to change value at counts[i],
|
---|
421 | that is already belonging to the next stride. Thus - 1. */
|
---|
422 | counts[i-k-1] = uint32(count)
|
---|
423 | }
|
---|
424 | }
|
---|
425 |
|
---|
426 | stride = 0
|
---|
427 | sum = 0
|
---|
428 | if i < length-2 {
|
---|
429 | /* All interesting strides have a count of at least 4, */
|
---|
430 | /* at least when non-zeros. */
|
---|
431 | limit = uint(256*(counts[i]+counts[i+1]+counts[i+2])/3 + 420)
|
---|
432 | } else if i < length {
|
---|
433 | limit = uint(256 * counts[i])
|
---|
434 | } else {
|
---|
435 | limit = 0
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | stride++
|
---|
440 | if i != length {
|
---|
441 | sum += uint(counts[i])
|
---|
442 | if stride >= 4 {
|
---|
443 | limit = (256*sum + stride/2) / stride
|
---|
444 | }
|
---|
445 |
|
---|
446 | if stride == 4 {
|
---|
447 | limit += 120
|
---|
448 | }
|
---|
449 | }
|
---|
450 | }
|
---|
451 | }
|
---|
452 |
|
---|
453 | func decideOverRLEUse(depth []byte, length uint, use_rle_for_non_zero *bool, use_rle_for_zero *bool) {
|
---|
454 | var total_reps_zero uint = 0
|
---|
455 | var total_reps_non_zero uint = 0
|
---|
456 | var count_reps_zero uint = 1
|
---|
457 | var count_reps_non_zero uint = 1
|
---|
458 | var i uint
|
---|
459 | for i = 0; i < length; {
|
---|
460 | var value byte = depth[i]
|
---|
461 | var reps uint = 1
|
---|
462 | var k uint
|
---|
463 | for k = i + 1; k < length && depth[k] == value; k++ {
|
---|
464 | reps++
|
---|
465 | }
|
---|
466 |
|
---|
467 | if reps >= 3 && value == 0 {
|
---|
468 | total_reps_zero += reps
|
---|
469 | count_reps_zero++
|
---|
470 | }
|
---|
471 |
|
---|
472 | if reps >= 4 && value != 0 {
|
---|
473 | total_reps_non_zero += reps
|
---|
474 | count_reps_non_zero++
|
---|
475 | }
|
---|
476 |
|
---|
477 | i += reps
|
---|
478 | }
|
---|
479 |
|
---|
480 | *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero*2
|
---|
481 | *use_rle_for_zero = total_reps_zero > count_reps_zero*2
|
---|
482 | }
|
---|
483 |
|
---|
484 | /* Write a Huffman tree from bit depths into the bit-stream representation
|
---|
485 | of a Huffman tree. The generated Huffman tree is to be compressed once
|
---|
486 | more using a Huffman tree */
|
---|
487 | func writeHuffmanTree(depth []byte, length uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
|
---|
488 | var previous_value byte = initialRepeatedCodeLength
|
---|
489 | var i uint
|
---|
490 | var use_rle_for_non_zero bool = false
|
---|
491 | var use_rle_for_zero bool = false
|
---|
492 | var new_length uint = length
|
---|
493 | /* Throw away trailing zeros. */
|
---|
494 | for i = 0; i < length; i++ {
|
---|
495 | if depth[length-i-1] == 0 {
|
---|
496 | new_length--
|
---|
497 | } else {
|
---|
498 | break
|
---|
499 | }
|
---|
500 | }
|
---|
501 |
|
---|
502 | /* First gather statistics on if it is a good idea to do RLE. */
|
---|
503 | if length > 50 {
|
---|
504 | /* Find RLE coding for longer codes.
|
---|
505 | Shorter codes seem not to benefit from RLE. */
|
---|
506 | decideOverRLEUse(depth, new_length, &use_rle_for_non_zero, &use_rle_for_zero)
|
---|
507 | }
|
---|
508 |
|
---|
509 | /* Actual RLE coding. */
|
---|
510 | for i = 0; i < new_length; {
|
---|
511 | var value byte = depth[i]
|
---|
512 | var reps uint = 1
|
---|
513 | if (value != 0 && use_rle_for_non_zero) || (value == 0 && use_rle_for_zero) {
|
---|
514 | var k uint
|
---|
515 | for k = i + 1; k < new_length && depth[k] == value; k++ {
|
---|
516 | reps++
|
---|
517 | }
|
---|
518 | }
|
---|
519 |
|
---|
520 | if value == 0 {
|
---|
521 | writeHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data)
|
---|
522 | } else {
|
---|
523 | writeHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree, extra_bits_data)
|
---|
524 | previous_value = value
|
---|
525 | }
|
---|
526 |
|
---|
527 | i += reps
|
---|
528 | }
|
---|
529 | }
|
---|
530 |
|
---|
531 | var reverseBits_kLut = [16]uint{
|
---|
532 | 0x00,
|
---|
533 | 0x08,
|
---|
534 | 0x04,
|
---|
535 | 0x0C,
|
---|
536 | 0x02,
|
---|
537 | 0x0A,
|
---|
538 | 0x06,
|
---|
539 | 0x0E,
|
---|
540 | 0x01,
|
---|
541 | 0x09,
|
---|
542 | 0x05,
|
---|
543 | 0x0D,
|
---|
544 | 0x03,
|
---|
545 | 0x0B,
|
---|
546 | 0x07,
|
---|
547 | 0x0F,
|
---|
548 | }
|
---|
549 |
|
---|
550 | func reverseBits(num_bits uint, bits uint16) uint16 {
|
---|
551 | var retval uint = reverseBits_kLut[bits&0x0F]
|
---|
552 | var i uint
|
---|
553 | for i = 4; i < num_bits; i += 4 {
|
---|
554 | retval <<= 4
|
---|
555 | bits = uint16(bits >> 4)
|
---|
556 | retval |= reverseBits_kLut[bits&0x0F]
|
---|
557 | }
|
---|
558 |
|
---|
559 | retval >>= ((0 - num_bits) & 0x03)
|
---|
560 | return uint16(retval)
|
---|
561 | }
|
---|
562 |
|
---|
563 | /* 0..15 are values for bits */
|
---|
564 | const maxHuffmanBits = 16
|
---|
565 |
|
---|
566 | /* Get the actual bit values for a tree of bit depths. */
|
---|
567 | func convertBitDepthsToSymbols(depth []byte, len uint, bits []uint16) {
|
---|
568 | var bl_count = [maxHuffmanBits]uint16{0}
|
---|
569 | var next_code [maxHuffmanBits]uint16
|
---|
570 | var i uint
|
---|
571 | /* In Brotli, all bit depths are [1..15]
|
---|
572 | 0 bit depth means that the symbol does not exist. */
|
---|
573 |
|
---|
574 | var code int = 0
|
---|
575 | for i = 0; i < len; i++ {
|
---|
576 | bl_count[depth[i]]++
|
---|
577 | }
|
---|
578 |
|
---|
579 | bl_count[0] = 0
|
---|
580 | next_code[0] = 0
|
---|
581 | for i = 1; i < maxHuffmanBits; i++ {
|
---|
582 | code = (code + int(bl_count[i-1])) << 1
|
---|
583 | next_code[i] = uint16(code)
|
---|
584 | }
|
---|
585 |
|
---|
586 | for i = 0; i < len; i++ {
|
---|
587 | if depth[i] != 0 {
|
---|
588 | bits[i] = reverseBits(uint(depth[i]), next_code[depth[i]])
|
---|
589 | next_code[depth[i]]++
|
---|
590 | }
|
---|
591 | }
|
---|
592 | }
|
---|