[822] | 1 | // Copyright (c) 2014 The mathutil Authors. All rights reserved.
|
---|
| 2 | // Use of this source code is governed by a BSD-style
|
---|
| 3 | // license that can be found in the LICENSE file.
|
---|
| 4 |
|
---|
| 5 | package mathutil // import "modernc.org/mathutil"
|
---|
| 6 |
|
---|
| 7 | import (
|
---|
| 8 | "fmt"
|
---|
| 9 | "math"
|
---|
| 10 | "math/big"
|
---|
| 11 | )
|
---|
| 12 |
|
---|
| 13 | // FC32 is a full cycle PRNG covering the 32 bit signed integer range.
|
---|
| 14 | // In contrast to full cycle generators shown at e.g. http://en.wikipedia.org/wiki/Full_cycle,
|
---|
| 15 | // this code doesn't produce values at constant delta (mod cycle length).
|
---|
| 16 | // The 32 bit limit is per this implementation, the algorithm used has no intrinsic limit on the cycle size.
|
---|
| 17 | // Properties include:
|
---|
| 18 | // - Adjustable limits on creation (hi, lo).
|
---|
| 19 | // - Positionable/randomly accessible (Pos, Seek).
|
---|
| 20 | // - Repeatable (deterministic).
|
---|
| 21 | // - Can run forward or backward (Next, Prev).
|
---|
| 22 | // - For a billion numbers cycle the Next/Prev PRN can be produced in cca 100-150ns.
|
---|
| 23 | // That's like 5-10 times slower compared to PRNs generated using the (non FC) rand package.
|
---|
| 24 | type FC32 struct {
|
---|
| 25 | cycle int64 // On average: 3 * delta / 2, (HQ: 2 * delta)
|
---|
| 26 | delta int64 // hi - lo
|
---|
| 27 | factors [][]int64 // This trades some space for hopefully a bit of speed (multiple adding vs multiplying).
|
---|
| 28 | lo int
|
---|
| 29 | mods []int // pos % set
|
---|
| 30 | pos int64 // Within cycle.
|
---|
| 31 | primes []int64 // Ordered. ∏ primes == cycle.
|
---|
| 32 | set []int64 // Reordered primes (magnitude order bases) according to seed.
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | // NewFC32 returns a newly created FC32 adjusted for the closed interval [lo, hi] or an Error if any.
|
---|
| 36 | // If hq == true then trade some generation time for improved (pseudo)randomness.
|
---|
| 37 | func NewFC32(lo, hi int, hq bool) (r *FC32, err error) {
|
---|
| 38 | if lo > hi {
|
---|
| 39 | return nil, fmt.Errorf("invalid range %d > %d", lo, hi)
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | if uint64(hi)-uint64(lo) > math.MaxUint32 {
|
---|
| 43 | return nil, fmt.Errorf("range out of int32 limits %d, %d", lo, hi)
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | delta := int64(hi) - int64(lo)
|
---|
| 47 | // Find the primorial covering whole delta
|
---|
| 48 | n, set, p := int64(1), []int64{}, uint32(2)
|
---|
| 49 | if hq {
|
---|
| 50 | p++
|
---|
| 51 | }
|
---|
| 52 | for {
|
---|
| 53 | set = append(set, int64(p))
|
---|
| 54 | n *= int64(p)
|
---|
| 55 | if n > delta {
|
---|
| 56 | break
|
---|
| 57 | }
|
---|
| 58 | p, _ = NextPrime(p)
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | // Adjust the set so n ∊ [delta, 2 * delta] (HQ: [delta, 3 * delta])
|
---|
| 62 | // while keeping the cardinality of the set (correlates with the statistic "randomness quality")
|
---|
| 63 | // at max, i.e. discard atmost one member.
|
---|
| 64 | i := -1 // no candidate prime
|
---|
| 65 | if n > 2*(delta+1) {
|
---|
| 66 | for j, p := range set {
|
---|
| 67 | q := n / p
|
---|
| 68 | if q < delta+1 {
|
---|
| 69 | break
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | i = j // mark the highest candidate prime set index
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | if i >= 0 { // shrink the inner cycle
|
---|
| 76 | n = n / set[i]
|
---|
| 77 | set = delete(set, i)
|
---|
| 78 | }
|
---|
| 79 | r = &FC32{
|
---|
| 80 | cycle: n,
|
---|
| 81 | delta: delta,
|
---|
| 82 | factors: make([][]int64, len(set)),
|
---|
| 83 | lo: lo,
|
---|
| 84 | mods: make([]int, len(set)),
|
---|
| 85 | primes: set,
|
---|
| 86 | }
|
---|
| 87 | r.Seed(1) // the default seed should be always non zero
|
---|
| 88 | return
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | // Cycle reports the length of the inner FCPRNG cycle.
|
---|
| 92 | // Cycle is atmost the double (HQ: triple) of the generator period (hi - lo + 1).
|
---|
| 93 | func (r *FC32) Cycle() int64 {
|
---|
| 94 | return r.cycle
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | // Next returns the first PRN after Pos.
|
---|
| 98 | func (r *FC32) Next() int {
|
---|
| 99 | return r.step(1)
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | // Pos reports the current position within the inner cycle.
|
---|
| 103 | func (r *FC32) Pos() int64 {
|
---|
| 104 | return r.pos
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | // Prev return the first PRN before Pos.
|
---|
| 108 | func (r *FC32) Prev() int {
|
---|
| 109 | return r.step(-1)
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | // Seed uses the provided seed value to initialize the generator to a deterministic state.
|
---|
| 113 | // A zero seed produces a "canonical" generator with worse randomness than for most non zero seeds.
|
---|
| 114 | // Still, the FC property holds for any seed value.
|
---|
| 115 | func (r *FC32) Seed(seed int64) {
|
---|
| 116 | u := uint64(seed)
|
---|
| 117 | r.set = mix(r.primes, &u)
|
---|
| 118 | n := int64(1)
|
---|
| 119 | for i, p := range r.set {
|
---|
| 120 | k := make([]int64, p)
|
---|
| 121 | v := int64(0)
|
---|
| 122 | for j := range k {
|
---|
| 123 | k[j] = v
|
---|
| 124 | v += n
|
---|
| 125 | }
|
---|
| 126 | n *= p
|
---|
| 127 | r.factors[i] = mix(k, &u)
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | // Seek sets Pos to |pos| % Cycle.
|
---|
| 132 | func (r *FC32) Seek(pos int64) { //vet:ignore
|
---|
| 133 | if pos < 0 {
|
---|
| 134 | pos = -pos
|
---|
| 135 | }
|
---|
| 136 | pos %= r.cycle
|
---|
| 137 | r.pos = pos
|
---|
| 138 | for i, p := range r.set {
|
---|
| 139 | r.mods[i] = int(pos % p)
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | func (r *FC32) step(dir int) int {
|
---|
| 144 | for { // avg loops per step: 3/2 (HQ: 2)
|
---|
| 145 | y := int64(0)
|
---|
| 146 | pos := r.pos
|
---|
| 147 | pos += int64(dir)
|
---|
| 148 | switch {
|
---|
| 149 | case pos < 0:
|
---|
| 150 | pos = r.cycle - 1
|
---|
| 151 | case pos >= r.cycle:
|
---|
| 152 | pos = 0
|
---|
| 153 | }
|
---|
| 154 | r.pos = pos
|
---|
| 155 | for i, mod := range r.mods {
|
---|
| 156 | mod += dir
|
---|
| 157 | p := int(r.set[i])
|
---|
| 158 | switch {
|
---|
| 159 | case mod < 0:
|
---|
| 160 | mod = p - 1
|
---|
| 161 | case mod >= p:
|
---|
| 162 | mod = 0
|
---|
| 163 | }
|
---|
| 164 | r.mods[i] = mod
|
---|
| 165 | y += r.factors[i][mod]
|
---|
| 166 | }
|
---|
| 167 | if y <= r.delta {
|
---|
| 168 | return int(y) + r.lo
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | func delete(set []int64, i int) (y []int64) {
|
---|
| 174 | for j, v := range set {
|
---|
| 175 | if j != i {
|
---|
| 176 | y = append(y, v)
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | return
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | func mix(set []int64, seed *uint64) (y []int64) {
|
---|
| 183 | for len(set) != 0 {
|
---|
| 184 | *seed = rol(*seed)
|
---|
| 185 | i := int(*seed % uint64(len(set)))
|
---|
| 186 | y = append(y, set[i])
|
---|
| 187 | set = delete(set, i)
|
---|
| 188 | }
|
---|
| 189 | return
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | func rol(u uint64) (y uint64) {
|
---|
| 193 | y = u << 1
|
---|
| 194 | if int64(u) < 0 {
|
---|
| 195 | y |= 1
|
---|
| 196 | }
|
---|
| 197 | return
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | // FCBig is a full cycle PRNG covering ranges outside of the int32 limits.
|
---|
| 201 | // For more info see the FC32 docs.
|
---|
| 202 | // Next/Prev PRN on a 1e15 cycle can be produced in about 2 µsec.
|
---|
| 203 | type FCBig struct {
|
---|
| 204 | cycle *big.Int // On average: 3 * delta / 2, (HQ: 2 * delta)
|
---|
| 205 | delta *big.Int // hi - lo
|
---|
| 206 | factors [][]*big.Int // This trades some space for hopefully a bit of speed (multiple adding vs multiplying).
|
---|
| 207 | lo *big.Int
|
---|
| 208 | mods []int // pos % set
|
---|
| 209 | pos *big.Int // Within cycle.
|
---|
| 210 | primes []int64 // Ordered. ∏ primes == cycle.
|
---|
| 211 | set []int64 // Reordered primes (magnitude order bases) according to seed.
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // NewFCBig returns a newly created FCBig adjusted for the closed interval [lo, hi] or an Error if any.
|
---|
| 215 | // If hq == true then trade some generation time for improved (pseudo)randomness.
|
---|
| 216 | func NewFCBig(lo, hi *big.Int, hq bool) (r *FCBig, err error) {
|
---|
| 217 | if lo.Cmp(hi) > 0 {
|
---|
| 218 | return nil, fmt.Errorf("invalid range %d > %d", lo, hi)
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | delta := big.NewInt(0)
|
---|
| 222 | delta.Add(delta, hi).Sub(delta, lo)
|
---|
| 223 |
|
---|
| 224 | // Find the primorial covering whole delta
|
---|
| 225 | n, set, pp, p := big.NewInt(1), []int64{}, big.NewInt(0), uint32(2)
|
---|
| 226 | if hq {
|
---|
| 227 | p++
|
---|
| 228 | }
|
---|
| 229 | for {
|
---|
| 230 | set = append(set, int64(p))
|
---|
| 231 | pp.SetInt64(int64(p))
|
---|
| 232 | n.Mul(n, pp)
|
---|
| 233 | if n.Cmp(delta) > 0 {
|
---|
| 234 | break
|
---|
| 235 | }
|
---|
| 236 | p, _ = NextPrime(p)
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | // Adjust the set so n ∊ [delta, 2 * delta] (HQ: [delta, 3 * delta])
|
---|
| 240 | // while keeping the cardinality of the set (correlates with the statistic "randomness quality")
|
---|
| 241 | // at max, i.e. discard atmost one member.
|
---|
| 242 | dd1 := big.NewInt(1)
|
---|
| 243 | dd1.Add(dd1, delta)
|
---|
| 244 | dd2 := big.NewInt(0)
|
---|
| 245 | dd2.Lsh(dd1, 1)
|
---|
| 246 | i := -1 // no candidate prime
|
---|
| 247 | if n.Cmp(dd2) > 0 {
|
---|
| 248 | q := big.NewInt(0)
|
---|
| 249 | for j, p := range set {
|
---|
| 250 | pp.SetInt64(p)
|
---|
| 251 | q.Set(n)
|
---|
| 252 | q.Div(q, pp)
|
---|
| 253 | if q.Cmp(dd1) < 0 {
|
---|
| 254 | break
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | i = j // mark the highest candidate prime set index
|
---|
| 258 | }
|
---|
| 259 | }
|
---|
| 260 | if i >= 0 { // shrink the inner cycle
|
---|
| 261 | pp.SetInt64(set[i])
|
---|
| 262 | n.Div(n, pp)
|
---|
| 263 | set = delete(set, i)
|
---|
| 264 | }
|
---|
| 265 | r = &FCBig{
|
---|
| 266 | cycle: n,
|
---|
| 267 | delta: delta,
|
---|
| 268 | factors: make([][]*big.Int, len(set)),
|
---|
| 269 | lo: lo,
|
---|
| 270 | mods: make([]int, len(set)),
|
---|
| 271 | pos: big.NewInt(0),
|
---|
| 272 | primes: set,
|
---|
| 273 | }
|
---|
| 274 | r.Seed(1) // the default seed should be always non zero
|
---|
| 275 | return
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | // Cycle reports the length of the inner FCPRNG cycle.
|
---|
| 279 | // Cycle is atmost the double (HQ: triple) of the generator period (hi - lo + 1).
|
---|
| 280 | func (r *FCBig) Cycle() *big.Int {
|
---|
| 281 | return r.cycle
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | // Next returns the first PRN after Pos.
|
---|
| 285 | func (r *FCBig) Next() *big.Int {
|
---|
| 286 | return r.step(1)
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | // Pos reports the current position within the inner cycle.
|
---|
| 290 | func (r *FCBig) Pos() *big.Int {
|
---|
| 291 | return r.pos
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | // Prev return the first PRN before Pos.
|
---|
| 295 | func (r *FCBig) Prev() *big.Int {
|
---|
| 296 | return r.step(-1)
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 | // Seed uses the provided seed value to initialize the generator to a deterministic state.
|
---|
| 300 | // A zero seed produces a "canonical" generator with worse randomness than for most non zero seeds.
|
---|
| 301 | // Still, the FC property holds for any seed value.
|
---|
| 302 | func (r *FCBig) Seed(seed int64) {
|
---|
| 303 | u := uint64(seed)
|
---|
| 304 | r.set = mix(r.primes, &u)
|
---|
| 305 | n := big.NewInt(1)
|
---|
| 306 | v := big.NewInt(0)
|
---|
| 307 | pp := big.NewInt(0)
|
---|
| 308 | for i, p := range r.set {
|
---|
| 309 | k := make([]*big.Int, p)
|
---|
| 310 | v.SetInt64(0)
|
---|
| 311 | for j := range k {
|
---|
| 312 | k[j] = big.NewInt(0)
|
---|
| 313 | k[j].Set(v)
|
---|
| 314 | v.Add(v, n)
|
---|
| 315 | }
|
---|
| 316 | pp.SetInt64(p)
|
---|
| 317 | n.Mul(n, pp)
|
---|
| 318 | r.factors[i] = mixBig(k, &u)
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | // Seek sets Pos to |pos| % Cycle.
|
---|
| 323 | func (r *FCBig) Seek(pos *big.Int) {
|
---|
| 324 | r.pos.Set(pos)
|
---|
| 325 | r.pos.Abs(r.pos)
|
---|
| 326 | r.pos.Mod(r.pos, r.cycle)
|
---|
| 327 | mod := big.NewInt(0)
|
---|
| 328 | pp := big.NewInt(0)
|
---|
| 329 | for i, p := range r.set {
|
---|
| 330 | pp.SetInt64(p)
|
---|
| 331 | r.mods[i] = int(mod.Mod(r.pos, pp).Int64())
|
---|
| 332 | }
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | func (r *FCBig) step(dir int) (y *big.Int) {
|
---|
| 336 | y = big.NewInt(0)
|
---|
| 337 | d := big.NewInt(int64(dir))
|
---|
| 338 | for { // avg loops per step: 3/2 (HQ: 2)
|
---|
| 339 | r.pos.Add(r.pos, d)
|
---|
| 340 | switch {
|
---|
| 341 | case r.pos.Sign() < 0:
|
---|
| 342 | r.pos.Add(r.pos, r.cycle)
|
---|
| 343 | case r.pos.Cmp(r.cycle) >= 0:
|
---|
| 344 | r.pos.SetInt64(0)
|
---|
| 345 | }
|
---|
| 346 | for i, mod := range r.mods {
|
---|
| 347 | mod += dir
|
---|
| 348 | p := int(r.set[i])
|
---|
| 349 | switch {
|
---|
| 350 | case mod < 0:
|
---|
| 351 | mod = p - 1
|
---|
| 352 | case mod >= p:
|
---|
| 353 | mod = 0
|
---|
| 354 | }
|
---|
| 355 | r.mods[i] = mod
|
---|
| 356 | y.Add(y, r.factors[i][mod])
|
---|
| 357 | }
|
---|
| 358 | if y.Cmp(r.delta) <= 0 {
|
---|
| 359 | y.Add(y, r.lo)
|
---|
| 360 | return
|
---|
| 361 | }
|
---|
| 362 | y.SetInt64(0)
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 |
|
---|
| 366 | func deleteBig(set []*big.Int, i int) (y []*big.Int) {
|
---|
| 367 | for j, v := range set {
|
---|
| 368 | if j != i {
|
---|
| 369 | y = append(y, v)
|
---|
| 370 | }
|
---|
| 371 | }
|
---|
| 372 | return
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 | func mixBig(set []*big.Int, seed *uint64) (y []*big.Int) {
|
---|
| 376 | for len(set) != 0 {
|
---|
| 377 | *seed = rol(*seed)
|
---|
| 378 | i := int(*seed % uint64(len(set)))
|
---|
| 379 | y = append(y, set[i])
|
---|
| 380 | set = deleteBig(set, i)
|
---|
| 381 | }
|
---|
| 382 | return
|
---|
| 383 | }
|
---|