1 | // Copyright (c) 2014 The mathutil Authors. All rights reserved.
|
---|
2 | // Use of this source code is governed by a BSD-style
|
---|
3 | // license that can be found in the LICENSE file.
|
---|
4 |
|
---|
5 | package mathutil // import "modernc.org/mathutil"
|
---|
6 |
|
---|
7 | import (
|
---|
8 | "math"
|
---|
9 | )
|
---|
10 |
|
---|
11 | // IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
|
---|
12 | func IsPrimeUint16(n uint16) bool {
|
---|
13 | return n > 0 && primes16[n-1] == 1
|
---|
14 | }
|
---|
15 |
|
---|
16 | // NextPrimeUint16 returns first prime > n and true if successful or an
|
---|
17 | // undefined value and false if there is no next prime in the uint16 limits.
|
---|
18 | // Typical run time is few ns.
|
---|
19 | func NextPrimeUint16(n uint16) (p uint16, ok bool) {
|
---|
20 | return n + uint16(primes16[n]), n < 65521
|
---|
21 | }
|
---|
22 |
|
---|
23 | // IsPrime returns true if n is prime. Typical run time is about 100 ns.
|
---|
24 | func IsPrime(n uint32) bool {
|
---|
25 | switch {
|
---|
26 | case n&1 == 0:
|
---|
27 | return n == 2
|
---|
28 | case n%3 == 0:
|
---|
29 | return n == 3
|
---|
30 | case n%5 == 0:
|
---|
31 | return n == 5
|
---|
32 | case n%7 == 0:
|
---|
33 | return n == 7
|
---|
34 | case n%11 == 0:
|
---|
35 | return n == 11
|
---|
36 | case n%13 == 0:
|
---|
37 | return n == 13
|
---|
38 | case n%17 == 0:
|
---|
39 | return n == 17
|
---|
40 | case n%19 == 0:
|
---|
41 | return n == 19
|
---|
42 | case n%23 == 0:
|
---|
43 | return n == 23
|
---|
44 | case n%29 == 0:
|
---|
45 | return n == 29
|
---|
46 | case n%31 == 0:
|
---|
47 | return n == 31
|
---|
48 | case n%37 == 0:
|
---|
49 | return n == 37
|
---|
50 | case n%41 == 0:
|
---|
51 | return n == 41
|
---|
52 | case n%43 == 0:
|
---|
53 | return n == 43
|
---|
54 | case n%47 == 0:
|
---|
55 | return n == 47
|
---|
56 | case n%53 == 0:
|
---|
57 | return n == 53 // Benchmarked optimum
|
---|
58 | case n < 65536:
|
---|
59 | // use table data
|
---|
60 | return IsPrimeUint16(uint16(n))
|
---|
61 | default:
|
---|
62 | mod := ModPowUint32(2, (n+1)/2, n)
|
---|
63 | if mod != 2 && mod != n-2 {
|
---|
64 | return false
|
---|
65 | }
|
---|
66 | blk := &lohi[n>>24]
|
---|
67 | lo, hi := blk.lo, blk.hi
|
---|
68 | for lo <= hi {
|
---|
69 | index := (lo + hi) >> 1
|
---|
70 | liar := liars[index]
|
---|
71 | switch {
|
---|
72 | case n > liar:
|
---|
73 | lo = index + 1
|
---|
74 | case n < liar:
|
---|
75 | hi = index - 1
|
---|
76 | default:
|
---|
77 | return false
|
---|
78 | }
|
---|
79 | }
|
---|
80 | return true
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | // IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
|
---|
85 | //
|
---|
86 | // SPRP bases: http://miller-rabin.appspot.com
|
---|
87 | func IsPrimeUint64(n uint64) bool {
|
---|
88 | switch {
|
---|
89 | case n%2 == 0:
|
---|
90 | return n == 2
|
---|
91 | case n%3 == 0:
|
---|
92 | return n == 3
|
---|
93 | case n%5 == 0:
|
---|
94 | return n == 5
|
---|
95 | case n%7 == 0:
|
---|
96 | return n == 7
|
---|
97 | case n%11 == 0:
|
---|
98 | return n == 11
|
---|
99 | case n%13 == 0:
|
---|
100 | return n == 13
|
---|
101 | case n%17 == 0:
|
---|
102 | return n == 17
|
---|
103 | case n%19 == 0:
|
---|
104 | return n == 19
|
---|
105 | case n%23 == 0:
|
---|
106 | return n == 23
|
---|
107 | case n%29 == 0:
|
---|
108 | return n == 29
|
---|
109 | case n%31 == 0:
|
---|
110 | return n == 31
|
---|
111 | case n%37 == 0:
|
---|
112 | return n == 37
|
---|
113 | case n%41 == 0:
|
---|
114 | return n == 41
|
---|
115 | case n%43 == 0:
|
---|
116 | return n == 43
|
---|
117 | case n%47 == 0:
|
---|
118 | return n == 47
|
---|
119 | case n%53 == 0:
|
---|
120 | return n == 53
|
---|
121 | case n%59 == 0:
|
---|
122 | return n == 59
|
---|
123 | case n%61 == 0:
|
---|
124 | return n == 61
|
---|
125 | case n%67 == 0:
|
---|
126 | return n == 67
|
---|
127 | case n%71 == 0:
|
---|
128 | return n == 71
|
---|
129 | case n%73 == 0:
|
---|
130 | return n == 73
|
---|
131 | case n%79 == 0:
|
---|
132 | return n == 79
|
---|
133 | case n%83 == 0:
|
---|
134 | return n == 83
|
---|
135 | case n%89 == 0:
|
---|
136 | return n == 89 // Benchmarked optimum
|
---|
137 | case n <= math.MaxUint16:
|
---|
138 | return IsPrimeUint16(uint16(n))
|
---|
139 | case n <= math.MaxUint32:
|
---|
140 | return ProbablyPrimeUint32(uint32(n), 11000544) &&
|
---|
141 | ProbablyPrimeUint32(uint32(n), 31481107)
|
---|
142 | case n < 105936894253:
|
---|
143 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
144 | ProbablyPrimeUint64_32(n, 1005905886) &&
|
---|
145 | ProbablyPrimeUint64_32(n, 1340600841)
|
---|
146 | case n < 31858317218647:
|
---|
147 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
148 | ProbablyPrimeUint64_32(n, 642735) &&
|
---|
149 | ProbablyPrimeUint64_32(n, 553174392) &&
|
---|
150 | ProbablyPrimeUint64_32(n, 3046413974)
|
---|
151 | case n < 3071837692357849:
|
---|
152 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
153 | ProbablyPrimeUint64_32(n, 75088) &&
|
---|
154 | ProbablyPrimeUint64_32(n, 642735) &&
|
---|
155 | ProbablyPrimeUint64_32(n, 203659041) &&
|
---|
156 | ProbablyPrimeUint64_32(n, 3613982119)
|
---|
157 | default:
|
---|
158 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
159 | ProbablyPrimeUint64_32(n, 325) &&
|
---|
160 | ProbablyPrimeUint64_32(n, 9375) &&
|
---|
161 | ProbablyPrimeUint64_32(n, 28178) &&
|
---|
162 | ProbablyPrimeUint64_32(n, 450775) &&
|
---|
163 | ProbablyPrimeUint64_32(n, 9780504) &&
|
---|
164 | ProbablyPrimeUint64_32(n, 1795265022)
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | // NextPrime returns first prime > n and true if successful or an undefined value and false if there
|
---|
169 | // is no next prime in the uint32 limits. Typical run time is about 2 µs.
|
---|
170 | func NextPrime(n uint32) (p uint32, ok bool) {
|
---|
171 | switch {
|
---|
172 | case n < 65521:
|
---|
173 | p16, _ := NextPrimeUint16(uint16(n))
|
---|
174 | return uint32(p16), true
|
---|
175 | case n >= math.MaxUint32-4:
|
---|
176 | return
|
---|
177 | }
|
---|
178 |
|
---|
179 | n++
|
---|
180 | var d0, d uint32
|
---|
181 | switch mod := n % 6; mod {
|
---|
182 | case 0:
|
---|
183 | d0, d = 1, 4
|
---|
184 | case 1:
|
---|
185 | d = 4
|
---|
186 | case 2, 3, 4:
|
---|
187 | d0, d = 5-mod, 2
|
---|
188 | case 5:
|
---|
189 | d = 2
|
---|
190 | }
|
---|
191 |
|
---|
192 | p = n + d0
|
---|
193 | if p < n { // overflow
|
---|
194 | return
|
---|
195 | }
|
---|
196 |
|
---|
197 | for {
|
---|
198 | if IsPrime(p) {
|
---|
199 | return p, true
|
---|
200 | }
|
---|
201 |
|
---|
202 | p0 := p
|
---|
203 | p += d
|
---|
204 | if p < p0 { // overflow
|
---|
205 | break
|
---|
206 | }
|
---|
207 |
|
---|
208 | d ^= 6
|
---|
209 | }
|
---|
210 | return
|
---|
211 | }
|
---|
212 |
|
---|
213 | // NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
|
---|
214 | // is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
|
---|
215 | func NextPrimeUint64(n uint64) (p uint64, ok bool) {
|
---|
216 | switch {
|
---|
217 | case n < 65521:
|
---|
218 | p16, _ := NextPrimeUint16(uint16(n))
|
---|
219 | return uint64(p16), true
|
---|
220 | case n >= 18446744073709551557: // last uint64 prime
|
---|
221 | return
|
---|
222 | }
|
---|
223 |
|
---|
224 | n++
|
---|
225 | var d0, d uint64
|
---|
226 | switch mod := n % 6; mod {
|
---|
227 | case 0:
|
---|
228 | d0, d = 1, 4
|
---|
229 | case 1:
|
---|
230 | d = 4
|
---|
231 | case 2, 3, 4:
|
---|
232 | d0, d = 5-mod, 2
|
---|
233 | case 5:
|
---|
234 | d = 2
|
---|
235 | }
|
---|
236 |
|
---|
237 | p = n + d0
|
---|
238 | if p < n { // overflow
|
---|
239 | return
|
---|
240 | }
|
---|
241 |
|
---|
242 | for {
|
---|
243 | if ok = IsPrimeUint64(p); ok {
|
---|
244 | break
|
---|
245 | }
|
---|
246 |
|
---|
247 | p0 := p
|
---|
248 | p += d
|
---|
249 | if p < p0 { // overflow
|
---|
250 | break
|
---|
251 | }
|
---|
252 |
|
---|
253 | d ^= 6
|
---|
254 | }
|
---|
255 | return
|
---|
256 | }
|
---|
257 |
|
---|
258 | // FactorTerm is one term of an integer factorization.
|
---|
259 | type FactorTerm struct {
|
---|
260 | Prime uint32 // The divisor
|
---|
261 | Power uint32 // Term == Prime^Power
|
---|
262 | }
|
---|
263 |
|
---|
264 | // FactorTerms represent a factorization of an integer
|
---|
265 | type FactorTerms []FactorTerm
|
---|
266 |
|
---|
267 | // FactorInt returns prime factorization of n > 1 or nil otherwise.
|
---|
268 | // Resulting factors are ordered by Prime. Typical run time is few µs.
|
---|
269 | func FactorInt(n uint32) (f FactorTerms) {
|
---|
270 | switch {
|
---|
271 | case n < 2:
|
---|
272 | return
|
---|
273 | case IsPrime(n):
|
---|
274 | return []FactorTerm{{n, 1}}
|
---|
275 | }
|
---|
276 |
|
---|
277 | f, w := make([]FactorTerm, 9), 0
|
---|
278 | for p := 2; p < len(primes16); p += int(primes16[p]) {
|
---|
279 | if uint(p*p) > uint(n) {
|
---|
280 | break
|
---|
281 | }
|
---|
282 |
|
---|
283 | power := uint32(0)
|
---|
284 | for n%uint32(p) == 0 {
|
---|
285 | n /= uint32(p)
|
---|
286 | power++
|
---|
287 | }
|
---|
288 | if power != 0 {
|
---|
289 | f[w] = FactorTerm{uint32(p), power}
|
---|
290 | w++
|
---|
291 | }
|
---|
292 | if n == 1 {
|
---|
293 | break
|
---|
294 | }
|
---|
295 | }
|
---|
296 | if n != 1 {
|
---|
297 | f[w] = FactorTerm{n, 1}
|
---|
298 | w++
|
---|
299 | }
|
---|
300 | return f[:w]
|
---|
301 | }
|
---|
302 |
|
---|
303 | // PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
|
---|
304 | // product of max 'max' primorials. The slice is not sorted.
|
---|
305 | //
|
---|
306 | // See also: http://en.wikipedia.org/wiki/Primorial
|
---|
307 | func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
|
---|
308 | lo64, hi64 := int64(lo), int64(hi)
|
---|
309 | if max > 31 { // N/A
|
---|
310 | max = 31
|
---|
311 | }
|
---|
312 |
|
---|
313 | var f func(int64, int64, uint32)
|
---|
314 | f = func(n, p int64, emax uint32) {
|
---|
315 | e := uint32(1)
|
---|
316 | for n <= hi64 && e <= emax {
|
---|
317 | n *= p
|
---|
318 | if n >= lo64 && n <= hi64 {
|
---|
319 | r = append(r, uint32(n))
|
---|
320 | }
|
---|
321 | if n < hi64 {
|
---|
322 | p, _ := NextPrime(uint32(p))
|
---|
323 | f(n, int64(p), e)
|
---|
324 | }
|
---|
325 | e++
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | f(1, 2, max)
|
---|
330 | return
|
---|
331 | }
|
---|