[822] | 1 | // Copyright (c) 2014 The mathutil Authors. All rights reserved.
|
---|
| 2 | // Use of this source code is governed by a BSD-style
|
---|
| 3 | // license that can be found in the LICENSE file.
|
---|
| 4 |
|
---|
| 5 | package mathutil // import "modernc.org/mathutil"
|
---|
| 6 |
|
---|
| 7 | import (
|
---|
| 8 | "math"
|
---|
| 9 | )
|
---|
| 10 |
|
---|
| 11 | // IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
|
---|
| 12 | func IsPrimeUint16(n uint16) bool {
|
---|
| 13 | return n > 0 && primes16[n-1] == 1
|
---|
| 14 | }
|
---|
| 15 |
|
---|
| 16 | // NextPrimeUint16 returns first prime > n and true if successful or an
|
---|
| 17 | // undefined value and false if there is no next prime in the uint16 limits.
|
---|
| 18 | // Typical run time is few ns.
|
---|
| 19 | func NextPrimeUint16(n uint16) (p uint16, ok bool) {
|
---|
| 20 | return n + uint16(primes16[n]), n < 65521
|
---|
| 21 | }
|
---|
| 22 |
|
---|
| 23 | // IsPrime returns true if n is prime. Typical run time is about 100 ns.
|
---|
| 24 | func IsPrime(n uint32) bool {
|
---|
| 25 | switch {
|
---|
| 26 | case n&1 == 0:
|
---|
| 27 | return n == 2
|
---|
| 28 | case n%3 == 0:
|
---|
| 29 | return n == 3
|
---|
| 30 | case n%5 == 0:
|
---|
| 31 | return n == 5
|
---|
| 32 | case n%7 == 0:
|
---|
| 33 | return n == 7
|
---|
| 34 | case n%11 == 0:
|
---|
| 35 | return n == 11
|
---|
| 36 | case n%13 == 0:
|
---|
| 37 | return n == 13
|
---|
| 38 | case n%17 == 0:
|
---|
| 39 | return n == 17
|
---|
| 40 | case n%19 == 0:
|
---|
| 41 | return n == 19
|
---|
| 42 | case n%23 == 0:
|
---|
| 43 | return n == 23
|
---|
| 44 | case n%29 == 0:
|
---|
| 45 | return n == 29
|
---|
| 46 | case n%31 == 0:
|
---|
| 47 | return n == 31
|
---|
| 48 | case n%37 == 0:
|
---|
| 49 | return n == 37
|
---|
| 50 | case n%41 == 0:
|
---|
| 51 | return n == 41
|
---|
| 52 | case n%43 == 0:
|
---|
| 53 | return n == 43
|
---|
| 54 | case n%47 == 0:
|
---|
| 55 | return n == 47
|
---|
| 56 | case n%53 == 0:
|
---|
| 57 | return n == 53 // Benchmarked optimum
|
---|
| 58 | case n < 65536:
|
---|
| 59 | // use table data
|
---|
| 60 | return IsPrimeUint16(uint16(n))
|
---|
| 61 | default:
|
---|
| 62 | mod := ModPowUint32(2, (n+1)/2, n)
|
---|
| 63 | if mod != 2 && mod != n-2 {
|
---|
| 64 | return false
|
---|
| 65 | }
|
---|
| 66 | blk := &lohi[n>>24]
|
---|
| 67 | lo, hi := blk.lo, blk.hi
|
---|
| 68 | for lo <= hi {
|
---|
| 69 | index := (lo + hi) >> 1
|
---|
| 70 | liar := liars[index]
|
---|
| 71 | switch {
|
---|
| 72 | case n > liar:
|
---|
| 73 | lo = index + 1
|
---|
| 74 | case n < liar:
|
---|
| 75 | hi = index - 1
|
---|
| 76 | default:
|
---|
| 77 | return false
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | return true
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | // IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
|
---|
| 85 | //
|
---|
| 86 | // SPRP bases: http://miller-rabin.appspot.com
|
---|
| 87 | func IsPrimeUint64(n uint64) bool {
|
---|
| 88 | switch {
|
---|
| 89 | case n%2 == 0:
|
---|
| 90 | return n == 2
|
---|
| 91 | case n%3 == 0:
|
---|
| 92 | return n == 3
|
---|
| 93 | case n%5 == 0:
|
---|
| 94 | return n == 5
|
---|
| 95 | case n%7 == 0:
|
---|
| 96 | return n == 7
|
---|
| 97 | case n%11 == 0:
|
---|
| 98 | return n == 11
|
---|
| 99 | case n%13 == 0:
|
---|
| 100 | return n == 13
|
---|
| 101 | case n%17 == 0:
|
---|
| 102 | return n == 17
|
---|
| 103 | case n%19 == 0:
|
---|
| 104 | return n == 19
|
---|
| 105 | case n%23 == 0:
|
---|
| 106 | return n == 23
|
---|
| 107 | case n%29 == 0:
|
---|
| 108 | return n == 29
|
---|
| 109 | case n%31 == 0:
|
---|
| 110 | return n == 31
|
---|
| 111 | case n%37 == 0:
|
---|
| 112 | return n == 37
|
---|
| 113 | case n%41 == 0:
|
---|
| 114 | return n == 41
|
---|
| 115 | case n%43 == 0:
|
---|
| 116 | return n == 43
|
---|
| 117 | case n%47 == 0:
|
---|
| 118 | return n == 47
|
---|
| 119 | case n%53 == 0:
|
---|
| 120 | return n == 53
|
---|
| 121 | case n%59 == 0:
|
---|
| 122 | return n == 59
|
---|
| 123 | case n%61 == 0:
|
---|
| 124 | return n == 61
|
---|
| 125 | case n%67 == 0:
|
---|
| 126 | return n == 67
|
---|
| 127 | case n%71 == 0:
|
---|
| 128 | return n == 71
|
---|
| 129 | case n%73 == 0:
|
---|
| 130 | return n == 73
|
---|
| 131 | case n%79 == 0:
|
---|
| 132 | return n == 79
|
---|
| 133 | case n%83 == 0:
|
---|
| 134 | return n == 83
|
---|
| 135 | case n%89 == 0:
|
---|
| 136 | return n == 89 // Benchmarked optimum
|
---|
| 137 | case n <= math.MaxUint16:
|
---|
| 138 | return IsPrimeUint16(uint16(n))
|
---|
| 139 | case n <= math.MaxUint32:
|
---|
| 140 | return ProbablyPrimeUint32(uint32(n), 11000544) &&
|
---|
| 141 | ProbablyPrimeUint32(uint32(n), 31481107)
|
---|
| 142 | case n < 105936894253:
|
---|
| 143 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
| 144 | ProbablyPrimeUint64_32(n, 1005905886) &&
|
---|
| 145 | ProbablyPrimeUint64_32(n, 1340600841)
|
---|
| 146 | case n < 31858317218647:
|
---|
| 147 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
| 148 | ProbablyPrimeUint64_32(n, 642735) &&
|
---|
| 149 | ProbablyPrimeUint64_32(n, 553174392) &&
|
---|
| 150 | ProbablyPrimeUint64_32(n, 3046413974)
|
---|
| 151 | case n < 3071837692357849:
|
---|
| 152 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
| 153 | ProbablyPrimeUint64_32(n, 75088) &&
|
---|
| 154 | ProbablyPrimeUint64_32(n, 642735) &&
|
---|
| 155 | ProbablyPrimeUint64_32(n, 203659041) &&
|
---|
| 156 | ProbablyPrimeUint64_32(n, 3613982119)
|
---|
| 157 | default:
|
---|
| 158 | return ProbablyPrimeUint64_32(n, 2) &&
|
---|
| 159 | ProbablyPrimeUint64_32(n, 325) &&
|
---|
| 160 | ProbablyPrimeUint64_32(n, 9375) &&
|
---|
| 161 | ProbablyPrimeUint64_32(n, 28178) &&
|
---|
| 162 | ProbablyPrimeUint64_32(n, 450775) &&
|
---|
| 163 | ProbablyPrimeUint64_32(n, 9780504) &&
|
---|
| 164 | ProbablyPrimeUint64_32(n, 1795265022)
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | // NextPrime returns first prime > n and true if successful or an undefined value and false if there
|
---|
| 169 | // is no next prime in the uint32 limits. Typical run time is about 2 µs.
|
---|
| 170 | func NextPrime(n uint32) (p uint32, ok bool) {
|
---|
| 171 | switch {
|
---|
| 172 | case n < 65521:
|
---|
| 173 | p16, _ := NextPrimeUint16(uint16(n))
|
---|
| 174 | return uint32(p16), true
|
---|
| 175 | case n >= math.MaxUint32-4:
|
---|
| 176 | return
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | n++
|
---|
| 180 | var d0, d uint32
|
---|
| 181 | switch mod := n % 6; mod {
|
---|
| 182 | case 0:
|
---|
| 183 | d0, d = 1, 4
|
---|
| 184 | case 1:
|
---|
| 185 | d = 4
|
---|
| 186 | case 2, 3, 4:
|
---|
| 187 | d0, d = 5-mod, 2
|
---|
| 188 | case 5:
|
---|
| 189 | d = 2
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | p = n + d0
|
---|
| 193 | if p < n { // overflow
|
---|
| 194 | return
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | for {
|
---|
| 198 | if IsPrime(p) {
|
---|
| 199 | return p, true
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | p0 := p
|
---|
| 203 | p += d
|
---|
| 204 | if p < p0 { // overflow
|
---|
| 205 | break
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | d ^= 6
|
---|
| 209 | }
|
---|
| 210 | return
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | // NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
|
---|
| 214 | // is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
|
---|
| 215 | func NextPrimeUint64(n uint64) (p uint64, ok bool) {
|
---|
| 216 | switch {
|
---|
| 217 | case n < 65521:
|
---|
| 218 | p16, _ := NextPrimeUint16(uint16(n))
|
---|
| 219 | return uint64(p16), true
|
---|
| 220 | case n >= 18446744073709551557: // last uint64 prime
|
---|
| 221 | return
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | n++
|
---|
| 225 | var d0, d uint64
|
---|
| 226 | switch mod := n % 6; mod {
|
---|
| 227 | case 0:
|
---|
| 228 | d0, d = 1, 4
|
---|
| 229 | case 1:
|
---|
| 230 | d = 4
|
---|
| 231 | case 2, 3, 4:
|
---|
| 232 | d0, d = 5-mod, 2
|
---|
| 233 | case 5:
|
---|
| 234 | d = 2
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | p = n + d0
|
---|
| 238 | if p < n { // overflow
|
---|
| 239 | return
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | for {
|
---|
| 243 | if ok = IsPrimeUint64(p); ok {
|
---|
| 244 | break
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | p0 := p
|
---|
| 248 | p += d
|
---|
| 249 | if p < p0 { // overflow
|
---|
| 250 | break
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | d ^= 6
|
---|
| 254 | }
|
---|
| 255 | return
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | // FactorTerm is one term of an integer factorization.
|
---|
| 259 | type FactorTerm struct {
|
---|
| 260 | Prime uint32 // The divisor
|
---|
| 261 | Power uint32 // Term == Prime^Power
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | // FactorTerms represent a factorization of an integer
|
---|
| 265 | type FactorTerms []FactorTerm
|
---|
| 266 |
|
---|
| 267 | // FactorInt returns prime factorization of n > 1 or nil otherwise.
|
---|
| 268 | // Resulting factors are ordered by Prime. Typical run time is few µs.
|
---|
| 269 | func FactorInt(n uint32) (f FactorTerms) {
|
---|
| 270 | switch {
|
---|
| 271 | case n < 2:
|
---|
| 272 | return
|
---|
| 273 | case IsPrime(n):
|
---|
| 274 | return []FactorTerm{{n, 1}}
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | f, w := make([]FactorTerm, 9), 0
|
---|
| 278 | for p := 2; p < len(primes16); p += int(primes16[p]) {
|
---|
| 279 | if uint(p*p) > uint(n) {
|
---|
| 280 | break
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | power := uint32(0)
|
---|
| 284 | for n%uint32(p) == 0 {
|
---|
| 285 | n /= uint32(p)
|
---|
| 286 | power++
|
---|
| 287 | }
|
---|
| 288 | if power != 0 {
|
---|
| 289 | f[w] = FactorTerm{uint32(p), power}
|
---|
| 290 | w++
|
---|
| 291 | }
|
---|
| 292 | if n == 1 {
|
---|
| 293 | break
|
---|
| 294 | }
|
---|
| 295 | }
|
---|
| 296 | if n != 1 {
|
---|
| 297 | f[w] = FactorTerm{n, 1}
|
---|
| 298 | w++
|
---|
| 299 | }
|
---|
| 300 | return f[:w]
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | // PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
|
---|
| 304 | // product of max 'max' primorials. The slice is not sorted.
|
---|
| 305 | //
|
---|
| 306 | // See also: http://en.wikipedia.org/wiki/Primorial
|
---|
| 307 | func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
|
---|
| 308 | lo64, hi64 := int64(lo), int64(hi)
|
---|
| 309 | if max > 31 { // N/A
|
---|
| 310 | max = 31
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | var f func(int64, int64, uint32)
|
---|
| 314 | f = func(n, p int64, emax uint32) {
|
---|
| 315 | e := uint32(1)
|
---|
| 316 | for n <= hi64 && e <= emax {
|
---|
| 317 | n *= p
|
---|
| 318 | if n >= lo64 && n <= hi64 {
|
---|
| 319 | r = append(r, uint32(n))
|
---|
| 320 | }
|
---|
| 321 | if n < hi64 {
|
---|
| 322 | p, _ := NextPrime(uint32(p))
|
---|
| 323 | f(n, int64(p), e)
|
---|
| 324 | }
|
---|
| 325 | e++
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | f(1, 2, max)
|
---|
| 330 | return
|
---|
| 331 | }
|
---|