source: code/trunk/vendor/lukechampine.com/uint128/uint128.go@ 822

Last change on this file since 822 was 822, checked in by yakumo.izuru, 22 months ago

Prefer immortal.run over runit and rc.d, use vendored modules
for convenience.

Signed-off-by: Izuru Yakumo <yakumo.izuru@…>

File size: 9.9 KB
Line 
1package uint128 // import "lukechampine.com/uint128"
2
3import (
4 "encoding/binary"
5 "errors"
6 "fmt"
7 "math"
8 "math/big"
9 "math/bits"
10)
11
12// Zero is a zero-valued uint128.
13var Zero Uint128
14
15// Max is the largest possible uint128 value.
16var Max = New(math.MaxUint64, math.MaxUint64)
17
18// A Uint128 is an unsigned 128-bit number.
19type Uint128 struct {
20 Lo, Hi uint64
21}
22
23// IsZero returns true if u == 0.
24func (u Uint128) IsZero() bool {
25 // NOTE: we do not compare against Zero, because that is a global variable
26 // that could be modified.
27 return u == Uint128{}
28}
29
30// Equals returns true if u == v.
31//
32// Uint128 values can be compared directly with ==, but use of the Equals method
33// is preferred for consistency.
34func (u Uint128) Equals(v Uint128) bool {
35 return u == v
36}
37
38// Equals64 returns true if u == v.
39func (u Uint128) Equals64(v uint64) bool {
40 return u.Lo == v && u.Hi == 0
41}
42
43// Cmp compares u and v and returns:
44//
45// -1 if u < v
46// 0 if u == v
47// +1 if u > v
48//
49func (u Uint128) Cmp(v Uint128) int {
50 if u == v {
51 return 0
52 } else if u.Hi < v.Hi || (u.Hi == v.Hi && u.Lo < v.Lo) {
53 return -1
54 } else {
55 return 1
56 }
57}
58
59// Cmp64 compares u and v and returns:
60//
61// -1 if u < v
62// 0 if u == v
63// +1 if u > v
64//
65func (u Uint128) Cmp64(v uint64) int {
66 if u.Hi == 0 && u.Lo == v {
67 return 0
68 } else if u.Hi == 0 && u.Lo < v {
69 return -1
70 } else {
71 return 1
72 }
73}
74
75// And returns u&v.
76func (u Uint128) And(v Uint128) Uint128 {
77 return Uint128{u.Lo & v.Lo, u.Hi & v.Hi}
78}
79
80// And64 returns u&v.
81func (u Uint128) And64(v uint64) Uint128 {
82 return Uint128{u.Lo & v, u.Hi & 0}
83}
84
85// Or returns u|v.
86func (u Uint128) Or(v Uint128) Uint128 {
87 return Uint128{u.Lo | v.Lo, u.Hi | v.Hi}
88}
89
90// Or64 returns u|v.
91func (u Uint128) Or64(v uint64) Uint128 {
92 return Uint128{u.Lo | v, u.Hi | 0}
93}
94
95// Xor returns u^v.
96func (u Uint128) Xor(v Uint128) Uint128 {
97 return Uint128{u.Lo ^ v.Lo, u.Hi ^ v.Hi}
98}
99
100// Xor64 returns u^v.
101func (u Uint128) Xor64(v uint64) Uint128 {
102 return Uint128{u.Lo ^ v, u.Hi ^ 0}
103}
104
105// Add returns u+v.
106func (u Uint128) Add(v Uint128) Uint128 {
107 lo, carry := bits.Add64(u.Lo, v.Lo, 0)
108 hi, carry := bits.Add64(u.Hi, v.Hi, carry)
109 if carry != 0 {
110 panic("overflow")
111 }
112 return Uint128{lo, hi}
113}
114
115// AddWrap returns u+v with wraparound semantics; for example,
116// Max.AddWrap(From64(1)) == Zero.
117func (u Uint128) AddWrap(v Uint128) Uint128 {
118 lo, carry := bits.Add64(u.Lo, v.Lo, 0)
119 hi, _ := bits.Add64(u.Hi, v.Hi, carry)
120 return Uint128{lo, hi}
121}
122
123// Add64 returns u+v.
124func (u Uint128) Add64(v uint64) Uint128 {
125 lo, carry := bits.Add64(u.Lo, v, 0)
126 hi, carry := bits.Add64(u.Hi, 0, carry)
127 if carry != 0 {
128 panic("overflow")
129 }
130 return Uint128{lo, hi}
131}
132
133// AddWrap64 returns u+v with wraparound semantics; for example,
134// Max.AddWrap64(1) == Zero.
135func (u Uint128) AddWrap64(v uint64) Uint128 {
136 lo, carry := bits.Add64(u.Lo, v, 0)
137 hi := u.Hi + carry
138 return Uint128{lo, hi}
139}
140
141// Sub returns u-v.
142func (u Uint128) Sub(v Uint128) Uint128 {
143 lo, borrow := bits.Sub64(u.Lo, v.Lo, 0)
144 hi, borrow := bits.Sub64(u.Hi, v.Hi, borrow)
145 if borrow != 0 {
146 panic("underflow")
147 }
148 return Uint128{lo, hi}
149}
150
151// SubWrap returns u-v with wraparound semantics; for example,
152// Zero.SubWrap(From64(1)) == Max.
153func (u Uint128) SubWrap(v Uint128) Uint128 {
154 lo, borrow := bits.Sub64(u.Lo, v.Lo, 0)
155 hi, _ := bits.Sub64(u.Hi, v.Hi, borrow)
156 return Uint128{lo, hi}
157}
158
159// Sub64 returns u-v.
160func (u Uint128) Sub64(v uint64) Uint128 {
161 lo, borrow := bits.Sub64(u.Lo, v, 0)
162 hi, borrow := bits.Sub64(u.Hi, 0, borrow)
163 if borrow != 0 {
164 panic("underflow")
165 }
166 return Uint128{lo, hi}
167}
168
169// SubWrap64 returns u-v with wraparound semantics; for example,
170// Zero.SubWrap64(1) == Max.
171func (u Uint128) SubWrap64(v uint64) Uint128 {
172 lo, borrow := bits.Sub64(u.Lo, v, 0)
173 hi := u.Hi - borrow
174 return Uint128{lo, hi}
175}
176
177// Mul returns u*v, panicking on overflow.
178func (u Uint128) Mul(v Uint128) Uint128 {
179 hi, lo := bits.Mul64(u.Lo, v.Lo)
180 p0, p1 := bits.Mul64(u.Hi, v.Lo)
181 p2, p3 := bits.Mul64(u.Lo, v.Hi)
182 hi, c0 := bits.Add64(hi, p1, 0)
183 hi, c1 := bits.Add64(hi, p3, c0)
184 if (u.Hi != 0 && v.Hi != 0) || p0 != 0 || p2 != 0 || c1 != 0 {
185 panic("overflow")
186 }
187 return Uint128{lo, hi}
188}
189
190// MulWrap returns u*v with wraparound semantics; for example,
191// Max.MulWrap(Max) == 1.
192func (u Uint128) MulWrap(v Uint128) Uint128 {
193 hi, lo := bits.Mul64(u.Lo, v.Lo)
194 hi += u.Hi*v.Lo + u.Lo*v.Hi
195 return Uint128{lo, hi}
196}
197
198// Mul64 returns u*v, panicking on overflow.
199func (u Uint128) Mul64(v uint64) Uint128 {
200 hi, lo := bits.Mul64(u.Lo, v)
201 p0, p1 := bits.Mul64(u.Hi, v)
202 hi, c0 := bits.Add64(hi, p1, 0)
203 if p0 != 0 || c0 != 0 {
204 panic("overflow")
205 }
206 return Uint128{lo, hi}
207}
208
209// MulWrap64 returns u*v with wraparound semantics; for example,
210// Max.MulWrap64(2) == Max.Sub64(1).
211func (u Uint128) MulWrap64(v uint64) Uint128 {
212 hi, lo := bits.Mul64(u.Lo, v)
213 hi += u.Hi * v
214 return Uint128{lo, hi}
215}
216
217// Div returns u/v.
218func (u Uint128) Div(v Uint128) Uint128 {
219 q, _ := u.QuoRem(v)
220 return q
221}
222
223// Div64 returns u/v.
224func (u Uint128) Div64(v uint64) Uint128 {
225 q, _ := u.QuoRem64(v)
226 return q
227}
228
229// QuoRem returns q = u/v and r = u%v.
230func (u Uint128) QuoRem(v Uint128) (q, r Uint128) {
231 if v.Hi == 0 {
232 var r64 uint64
233 q, r64 = u.QuoRem64(v.Lo)
234 r = From64(r64)
235 } else {
236 // generate a "trial quotient," guaranteed to be within 1 of the actual
237 // quotient, then adjust.
238 n := uint(bits.LeadingZeros64(v.Hi))
239 v1 := v.Lsh(n)
240 u1 := u.Rsh(1)
241 tq, _ := bits.Div64(u1.Hi, u1.Lo, v1.Hi)
242 tq >>= 63 - n
243 if tq != 0 {
244 tq--
245 }
246 q = From64(tq)
247 // calculate remainder using trial quotient, then adjust if remainder is
248 // greater than divisor
249 r = u.Sub(v.Mul64(tq))
250 if r.Cmp(v) >= 0 {
251 q = q.Add64(1)
252 r = r.Sub(v)
253 }
254 }
255 return
256}
257
258// QuoRem64 returns q = u/v and r = u%v.
259func (u Uint128) QuoRem64(v uint64) (q Uint128, r uint64) {
260 if u.Hi < v {
261 q.Lo, r = bits.Div64(u.Hi, u.Lo, v)
262 } else {
263 q.Hi, r = bits.Div64(0, u.Hi, v)
264 q.Lo, r = bits.Div64(r, u.Lo, v)
265 }
266 return
267}
268
269// Mod returns r = u%v.
270func (u Uint128) Mod(v Uint128) (r Uint128) {
271 _, r = u.QuoRem(v)
272 return
273}
274
275// Mod64 returns r = u%v.
276func (u Uint128) Mod64(v uint64) (r uint64) {
277 _, r = u.QuoRem64(v)
278 return
279}
280
281// Lsh returns u<<n.
282func (u Uint128) Lsh(n uint) (s Uint128) {
283 if n > 64 {
284 s.Lo = 0
285 s.Hi = u.Lo << (n - 64)
286 } else {
287 s.Lo = u.Lo << n
288 s.Hi = u.Hi<<n | u.Lo>>(64-n)
289 }
290 return
291}
292
293// Rsh returns u>>n.
294func (u Uint128) Rsh(n uint) (s Uint128) {
295 if n > 64 {
296 s.Lo = u.Hi >> (n - 64)
297 s.Hi = 0
298 } else {
299 s.Lo = u.Lo>>n | u.Hi<<(64-n)
300 s.Hi = u.Hi >> n
301 }
302 return
303}
304
305// LeadingZeros returns the number of leading zero bits in u; the result is 128
306// for u == 0.
307func (u Uint128) LeadingZeros() int {
308 if u.Hi > 0 {
309 return bits.LeadingZeros64(u.Hi)
310 }
311 return 64 + bits.LeadingZeros64(u.Lo)
312}
313
314// TrailingZeros returns the number of trailing zero bits in u; the result is
315// 128 for u == 0.
316func (u Uint128) TrailingZeros() int {
317 if u.Lo > 0 {
318 return bits.TrailingZeros64(u.Lo)
319 }
320 return 64 + bits.TrailingZeros64(u.Hi)
321}
322
323// OnesCount returns the number of one bits ("population count") in u.
324func (u Uint128) OnesCount() int {
325 return bits.OnesCount64(u.Hi) + bits.OnesCount64(u.Lo)
326}
327
328// RotateLeft returns the value of u rotated left by (k mod 128) bits.
329func (u Uint128) RotateLeft(k int) Uint128 {
330 const n = 128
331 s := uint(k) & (n - 1)
332 return u.Lsh(s).Or(u.Rsh(n - s))
333}
334
335// RotateRight returns the value of u rotated left by (k mod 128) bits.
336func (u Uint128) RotateRight(k int) Uint128 {
337 return u.RotateLeft(-k)
338}
339
340// Reverse returns the value of u with its bits in reversed order.
341func (u Uint128) Reverse() Uint128 {
342 return Uint128{bits.Reverse64(u.Hi), bits.Reverse64(u.Lo)}
343}
344
345// ReverseBytes returns the value of u with its bytes in reversed order.
346func (u Uint128) ReverseBytes() Uint128 {
347 return Uint128{bits.ReverseBytes64(u.Hi), bits.ReverseBytes64(u.Lo)}
348}
349
350// Len returns the minimum number of bits required to represent u; the result is
351// 0 for u == 0.
352func (u Uint128) Len() int {
353 return 128 - u.LeadingZeros()
354}
355
356// String returns the base-10 representation of u as a string.
357func (u Uint128) String() string {
358 if u.IsZero() {
359 return "0"
360 }
361 buf := []byte("0000000000000000000000000000000000000000") // log10(2^128) < 40
362 for i := len(buf); ; i -= 19 {
363 q, r := u.QuoRem64(1e19) // largest power of 10 that fits in a uint64
364 var n int
365 for ; r != 0; r /= 10 {
366 n++
367 buf[i-n] += byte(r % 10)
368 }
369 if q.IsZero() {
370 return string(buf[i-n:])
371 }
372 u = q
373 }
374}
375
376// PutBytes stores u in b in little-endian order. It panics if len(b) < 16.
377func (u Uint128) PutBytes(b []byte) {
378 binary.LittleEndian.PutUint64(b[:8], u.Lo)
379 binary.LittleEndian.PutUint64(b[8:], u.Hi)
380}
381
382// Big returns u as a *big.Int.
383func (u Uint128) Big() *big.Int {
384 i := new(big.Int).SetUint64(u.Hi)
385 i = i.Lsh(i, 64)
386 i = i.Xor(i, new(big.Int).SetUint64(u.Lo))
387 return i
388}
389
390// Scan implements fmt.Scanner.
391func (u *Uint128) Scan(s fmt.ScanState, ch rune) error {
392 i := new(big.Int)
393 if err := i.Scan(s, ch); err != nil {
394 return err
395 } else if i.Sign() < 0 {
396 return errors.New("value cannot be negative")
397 } else if i.BitLen() > 128 {
398 return errors.New("value overflows Uint128")
399 }
400 u.Lo = i.Uint64()
401 u.Hi = i.Rsh(i, 64).Uint64()
402 return nil
403}
404
405// New returns the Uint128 value (lo,hi).
406func New(lo, hi uint64) Uint128 {
407 return Uint128{lo, hi}
408}
409
410// From64 converts v to a Uint128 value.
411func From64(v uint64) Uint128 {
412 return New(v, 0)
413}
414
415// FromBytes converts b to a Uint128 value.
416func FromBytes(b []byte) Uint128 {
417 return New(
418 binary.LittleEndian.Uint64(b[:8]),
419 binary.LittleEndian.Uint64(b[8:]),
420 )
421}
422
423// FromBig converts i to a Uint128 value. It panics if i is negative or
424// overflows 128 bits.
425func FromBig(i *big.Int) (u Uint128) {
426 if i.Sign() < 0 {
427 panic("value cannot be negative")
428 } else if i.BitLen() > 128 {
429 panic("value overflows Uint128")
430 }
431 u.Lo = i.Uint64()
432 u.Hi = i.Rsh(i, 64).Uint64()
433 return u
434}
435
436// FromString parses s as a Uint128 value.
437func FromString(s string) (u Uint128, err error) {
438 _, err = fmt.Sscan(s, &u)
439 return
440}
Note: See TracBrowser for help on using the repository browser.