source: code/trunk/vendor/github.com/remyoudompheng/bigfft/fft.go@ 822

Last change on this file since 822 was 822, checked in by yakumo.izuru, 22 months ago

Prefer immortal.run over runit and rc.d, use vendored modules
for convenience.

Signed-off-by: Izuru Yakumo <yakumo.izuru@…>

File size: 9.7 KB
RevLine 
[822]1// Package bigfft implements multiplication of big.Int using FFT.
2//
3// The implementation is based on the Schönhage-Strassen method
4// using integer FFT modulo 2^n+1.
5package bigfft
6
7import (
8 "math/big"
9 "unsafe"
10)
11
12const _W = int(unsafe.Sizeof(big.Word(0)) * 8)
13
14type nat []big.Word
15
16func (n nat) String() string {
17 v := new(big.Int)
18 v.SetBits(n)
19 return v.String()
20}
21
22// fftThreshold is the size (in words) above which FFT is used over
23// Karatsuba from math/big.
24//
25// TestCalibrate seems to indicate a threshold of 60kbits on 32-bit
26// arches and 110kbits on 64-bit arches.
27var fftThreshold = 1800
28
29// Mul computes the product x*y and returns z.
30// It can be used instead of the Mul method of
31// *big.Int from math/big package.
32func Mul(x, y *big.Int) *big.Int {
33 xwords := len(x.Bits())
34 ywords := len(y.Bits())
35 if xwords > fftThreshold && ywords > fftThreshold {
36 return mulFFT(x, y)
37 }
38 return new(big.Int).Mul(x, y)
39}
40
41func mulFFT(x, y *big.Int) *big.Int {
42 var xb, yb nat = x.Bits(), y.Bits()
43 zb := fftmul(xb, yb)
44 z := new(big.Int)
45 z.SetBits(zb)
46 if x.Sign()*y.Sign() < 0 {
47 z.Neg(z)
48 }
49 return z
50}
51
52// A FFT size of K=1<<k is adequate when K is about 2*sqrt(N) where
53// N = x.Bitlen() + y.Bitlen().
54
55func fftmul(x, y nat) nat {
56 k, m := fftSize(x, y)
57 xp := polyFromNat(x, k, m)
58 yp := polyFromNat(y, k, m)
59 rp := xp.Mul(&yp)
60 return rp.Int()
61}
62
63// fftSizeThreshold[i] is the maximal size (in bits) where we should use
64// fft size i.
65var fftSizeThreshold = [...]int64{0, 0, 0,
66 4 << 10, 8 << 10, 16 << 10, // 5
67 32 << 10, 64 << 10, 1 << 18, 1 << 20, 3 << 20, // 10
68 8 << 20, 30 << 20, 100 << 20, 300 << 20, 600 << 20,
69}
70
71// returns the FFT length k, m the number of words per chunk
72// such that m << k is larger than the number of words
73// in x*y.
74func fftSize(x, y nat) (k uint, m int) {
75 words := len(x) + len(y)
76 bits := int64(words) * int64(_W)
77 k = uint(len(fftSizeThreshold))
78 for i := range fftSizeThreshold {
79 if fftSizeThreshold[i] > bits {
80 k = uint(i)
81 break
82 }
83 }
84 // The 1<<k chunks of m words must have N bits so that
85 // 2^N-1 is larger than x*y. That is, m<<k > words
86 m = words>>k + 1
87 return
88}
89
90// valueSize returns the length (in words) to use for polynomial
91// coefficients, to compute a correct product of polynomials P*Q
92// where deg(P*Q) < K (== 1<<k) and where coefficients of P and Q are
93// less than b^m (== 1 << (m*_W)).
94// The chosen length (in bits) must be a multiple of 1 << (k-extra).
95func valueSize(k uint, m int, extra uint) int {
96 // The coefficients of P*Q are less than b^(2m)*K
97 // so we need W * valueSize >= 2*m*W+K
98 n := 2*m*_W + int(k) // necessary bits
99 K := 1 << (k - extra)
100 if K < _W {
101 K = _W
102 }
103 n = ((n / K) + 1) * K // round to a multiple of K
104 return n / _W
105}
106
107// poly represents an integer via a polynomial in Z[x]/(x^K+1)
108// where K is the FFT length and b^m is the computation basis 1<<(m*_W).
109// If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number
110// is P(b^m).
111type poly struct {
112 k uint // k is such that K = 1<<k.
113 m int // the m such that P(b^m) is the original number.
114 a []nat // a slice of at most K m-word coefficients.
115}
116
117// polyFromNat slices the number x into a polynomial
118// with 1<<k coefficients made of m words.
119func polyFromNat(x nat, k uint, m int) poly {
120 p := poly{k: k, m: m}
121 length := len(x)/m + 1
122 p.a = make([]nat, length)
123 for i := range p.a {
124 if len(x) < m {
125 p.a[i] = make(nat, m)
126 copy(p.a[i], x)
127 break
128 }
129 p.a[i] = x[:m]
130 x = x[m:]
131 }
132 return p
133}
134
135// Int evaluates back a poly to its integer value.
136func (p *poly) Int() nat {
137 length := len(p.a)*p.m + 1
138 if na := len(p.a); na > 0 {
139 length += len(p.a[na-1])
140 }
141 n := make(nat, length)
142 m := p.m
143 np := n
144 for i := range p.a {
145 l := len(p.a[i])
146 c := addVV(np[:l], np[:l], p.a[i])
147 if np[l] < ^big.Word(0) {
148 np[l] += c
149 } else {
150 addVW(np[l:], np[l:], c)
151 }
152 np = np[m:]
153 }
154 n = trim(n)
155 return n
156}
157
158func trim(n nat) nat {
159 for i := range n {
160 if n[len(n)-1-i] != 0 {
161 return n[:len(n)-i]
162 }
163 }
164 return nil
165}
166
167// Mul multiplies p and q modulo X^K-1, where K = 1<<p.k.
168// The product is done via a Fourier transform.
169func (p *poly) Mul(q *poly) poly {
170 // extra=2 because:
171 // * some power of 2 is a K-th root of unity when n is a multiple of K/2.
172 // * 2 itself is a square (see fermat.ShiftHalf)
173 n := valueSize(p.k, p.m, 2)
174
175 pv, qv := p.Transform(n), q.Transform(n)
176 rv := pv.Mul(&qv)
177 r := rv.InvTransform()
178 r.m = p.m
179 return r
180}
181
182// A polValues represents the value of a poly at the powers of a
183// K-th root of unity θ=2^(l/2) in Z/(b^n+1)Z, where b^n = 2^(K/4*l).
184type polValues struct {
185 k uint // k is such that K = 1<<k.
186 n int // the length of coefficients, n*_W a multiple of K/4.
187 values []fermat // a slice of K (n+1)-word values
188}
189
190// Transform evaluates p at θ^i for i = 0...K-1, where
191// θ is a K-th primitive root of unity in Z/(b^n+1)Z.
192func (p *poly) Transform(n int) polValues {
193 k := p.k
194 inputbits := make([]big.Word, (n+1)<<k)
195 input := make([]fermat, 1<<k)
196 // Now computed q(ω^i) for i = 0 ... K-1
197 valbits := make([]big.Word, (n+1)<<k)
198 values := make([]fermat, 1<<k)
199 for i := range values {
200 input[i] = inputbits[i*(n+1) : (i+1)*(n+1)]
201 if i < len(p.a) {
202 copy(input[i], p.a[i])
203 }
204 values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
205 }
206 fourier(values, input, false, n, k)
207 return polValues{k, n, values}
208}
209
210// InvTransform reconstructs p (modulo X^K - 1) from its
211// values at θ^i for i = 0..K-1.
212func (v *polValues) InvTransform() poly {
213 k, n := v.k, v.n
214
215 // Perform an inverse Fourier transform to recover p.
216 pbits := make([]big.Word, (n+1)<<k)
217 p := make([]fermat, 1<<k)
218 for i := range p {
219 p[i] = fermat(pbits[i*(n+1) : (i+1)*(n+1)])
220 }
221 fourier(p, v.values, true, n, k)
222 // Divide by K, and untwist q to recover p.
223 u := make(fermat, n+1)
224 a := make([]nat, 1<<k)
225 for i := range p {
226 u.Shift(p[i], -int(k))
227 copy(p[i], u)
228 a[i] = nat(p[i])
229 }
230 return poly{k: k, m: 0, a: a}
231}
232
233// NTransform evaluates p at θω^i for i = 0...K-1, where
234// θ is a (2K)-th primitive root of unity in Z/(b^n+1)Z
235// and ω = θ².
236func (p *poly) NTransform(n int) polValues {
237 k := p.k
238 if len(p.a) >= 1<<k {
239 panic("Transform: len(p.a) >= 1<<k")
240 }
241 // θ is represented as a shift.
242 θshift := (n * _W) >> k
243 // p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1)
244 // p(θx) = q(x) where
245 // q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1)
246 //
247 // Twist p by θ to obtain q.
248 tbits := make([]big.Word, (n+1)<<k)
249 twisted := make([]fermat, 1<<k)
250 src := make(fermat, n+1)
251 for i := range twisted {
252 twisted[i] = fermat(tbits[i*(n+1) : (i+1)*(n+1)])
253 if i < len(p.a) {
254 for i := range src {
255 src[i] = 0
256 }
257 copy(src, p.a[i])
258 twisted[i].Shift(src, θshift*i)
259 }
260 }
261
262 // Now computed q(ω^i) for i = 0 ... K-1
263 valbits := make([]big.Word, (n+1)<<k)
264 values := make([]fermat, 1<<k)
265 for i := range values {
266 values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
267 }
268 fourier(values, twisted, false, n, k)
269 return polValues{k, n, values}
270}
271
272// InvTransform reconstructs a polynomial from its values at
273// roots of x^K+1. The m field of the returned polynomial
274// is unspecified.
275func (v *polValues) InvNTransform() poly {
276 k := v.k
277 n := v.n
278 θshift := (n * _W) >> k
279
280 // Perform an inverse Fourier transform to recover q.
281 qbits := make([]big.Word, (n+1)<<k)
282 q := make([]fermat, 1<<k)
283 for i := range q {
284 q[i] = fermat(qbits[i*(n+1) : (i+1)*(n+1)])
285 }
286 fourier(q, v.values, true, n, k)
287
288 // Divide by K, and untwist q to recover p.
289 u := make(fermat, n+1)
290 a := make([]nat, 1<<k)
291 for i := range q {
292 u.Shift(q[i], -int(k)-i*θshift)
293 copy(q[i], u)
294 a[i] = nat(q[i])
295 }
296 return poly{k: k, m: 0, a: a}
297}
298
299// fourier performs an unnormalized Fourier transform
300// of src, a length 1<<k vector of numbers modulo b^n+1
301// where b = 1<<_W.
302func fourier(dst []fermat, src []fermat, backward bool, n int, k uint) {
303 var rec func(dst, src []fermat, size uint)
304 tmp := make(fermat, n+1) // pre-allocate temporary variables.
305 tmp2 := make(fermat, n+1) // pre-allocate temporary variables.
306
307 // The recursion function of the FFT.
308 // The root of unity used in the transform is ω=1<<(ω2shift/2).
309 // The source array may use shifted indices (i.e. the i-th
310 // element is src[i << idxShift]).
311 rec = func(dst, src []fermat, size uint) {
312 idxShift := k - size
313 ω2shift := (4 * n * _W) >> size
314 if backward {
315 ω2shift = -ω2shift
316 }
317
318 // Easy cases.
319 if len(src[0]) != n+1 || len(dst[0]) != n+1 {
320 panic("len(src[0]) != n+1 || len(dst[0]) != n+1")
321 }
322 switch size {
323 case 0:
324 copy(dst[0], src[0])
325 return
326 case 1:
327 dst[0].Add(src[0], src[1<<idxShift]) // dst[0] = src[0] + src[1]
328 dst[1].Sub(src[0], src[1<<idxShift]) // dst[1] = src[0] - src[1]
329 return
330 }
331
332 // Let P(x) = src[0] + src[1<<idxShift] * x + ... + src[K-1 << idxShift] * x^(K-1)
333 // The P(x) = Q1(x²) + x*Q2(x²)
334 // where Q1's coefficients are src with indices shifted by 1
335 // where Q2's coefficients are src[1<<idxShift:] with indices shifted by 1
336
337 // Split destination vectors in halves.
338 dst1 := dst[:1<<(size-1)]
339 dst2 := dst[1<<(size-1):]
340 // Transform Q1 and Q2 in the halves.
341 rec(dst1, src, size-1)
342 rec(dst2, src[1<<idxShift:], size-1)
343
344 // Reconstruct P's transform from transforms of Q1 and Q2.
345 // dst[i] is dst1[i] + ω^i * dst2[i]
346 // dst[i + 1<<(k-1)] is dst1[i] + ω^(i+K/2) * dst2[i]
347 //
348 for i := range dst1 {
349 tmp.ShiftHalf(dst2[i], i*ω2shift, tmp2) // ω^i * dst2[i]
350 dst2[i].Sub(dst1[i], tmp)
351 dst1[i].Add(dst1[i], tmp)
352 }
353 }
354 rec(dst, src, k)
355}
356
357// Mul returns the pointwise product of p and q.
358func (p *polValues) Mul(q *polValues) (r polValues) {
359 n := p.n
360 r.k, r.n = p.k, p.n
361 r.values = make([]fermat, len(p.values))
362 bits := make([]big.Word, len(p.values)*(n+1))
363 buf := make(fermat, 8*n)
364 for i := range r.values {
365 r.values[i] = bits[i*(n+1) : (i+1)*(n+1)]
366 z := buf.Mul(p.values[i], q.values[i])
367 copy(r.values[i], z)
368 }
369 return
370}
Note: See TracBrowser for help on using the repository browser.